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1 Introduction

Suppose we have a space - ⊂ R� and an unknown function 5 : - → . ⊂ R� . We take noisy measurements of 5 ,
~: = 5 (G: ) + n: , G: ∈ - , : = 1, . . . , # , where n: is a zero-mean Gaussian noise term. These measurements give us
some idea of the shape of 5 in the neighborhood of the G: .

A “classical” adaptive design problem is to sequentially choose sets of points G: such that the uncertainty of certain
functionals of 5 (“quantities of interest,” or “QOI”) is minimized. This is the problem of “adaptive experimental design”
that was addressed by [2] using techniques of Shannon information theory to characterize uncertainty, and exhibiting
a notion of “expected information” from a proposed experiment to optimize the choice of such an experiment. This
notion of optimality (also called “D-Optimality”) has been usefully coupled to Gaussian process (GP) modeling of the
function 5 , for example in [3].

There is a different question that could be asked in this setting: rather than minimizing the uncertainty of a set of
functionals, what if instead we want to find a point G) ∈ - such that the function 5 approaches some desired target
value 5) , that is 5 (G) ) ≈ 5) ? In order to accomplish this goal, we need to make sequential choices of G: that reduce
the uncertainty in 5 (·), but do so preferentially in regions of - where the value of 5 (·) approaches 5) .

This is the problem whose solution is set out in this memo. The motivation for the problem comes from the Soderholm
group’s liquid-liquid extraction (LLE) toy problem, in which the space - is the 3-simplex (3 of 3-component mixtures,
and the space Y is the “custody fraction,” also a 3-simplex, representing the fraction of protons associated with each
component in the mixture. The idea is in this application is to design experiments that minimize uncertainty while
locating a mixture with a desired custody fraction. From the above discussion, however, it should be clear that the
problem is considerably more general. As far as I can tell, it is also novel.

The approach adopted here is to assume a GP model on 5 (·). We will slightly generalize the above notion of
measurements using linear functionals of 5 (·). Then we will define a candidate objective function in terms of the
predictive log-likelihood of 5) , and show that this function has desirable properties with respect to targeting 5) .
We will then show that given a proposed new experiment, it is possible to compute the expectation value of this
objective function under the distribution of predicted new data given current data. The objective can thus be optimized
simultaneously with respect to the new experimental setting and the choice of G) .

As we will see, this objective has the desirable property of embodying the “exploration-exploitation” tension — the
competition between exploring regions of - where the function 5 (·) is quite uncertain and investigating regions of
- that seem promising for values of G satisfying 5 (G) = 5) . The resulting algorithm is what will be referred to as
“targeted sequential adaptive design.”

2 Model and Measurements

We will assume a GP model on 5 . Technically, since 5 is vector-valued (5 : R� → R�) we require a vector-valued
GP (a “VVGP”). This is a straightforward generalization of a GP. A VVGP is characterized by a vector-valued mean
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function `8 (G), 8 = 1, . . . , �, and by a matrix-valued covariance function  88′ (G, G ′) that is positive definite, so that for
any vector field ℎ : R� → R� we have that

∑
88′

∫
3G 3G ′ℎ8 (G)  88′ (G, G ′)ℎ8′ (G ′) > 0. I will not make explicit use of

VVGP covariances here, but merely allude to their existence and validity. Examples of their construction and use can
be found in [1]. We assume that 5 ∼ VVGP(`,  ), for some vector-valued function ` and some valid matrix-valued
covariance  .

The choice of covariance  assigns 5 to a space of functions Γ. A measurement operator on the function 5 (·) is a
linear functional � : Γ → R, yielding the result � ◦ 5 . A simple example of such a measurement is a sample at a
point G ∈ - , that is, �G ◦ 5 = 5 (G). More complex examples extend the scope of the problem. For example, suppose
that 5 (·) is a Fourier transform of some function, so that - is the transformed domain, and �C ◦ 5 =

∫
3G 48CG 5 (G) is

a measurement sample at a space-time point C . Or assume a tomographic setup, where 5 (·) represents an object to be
reconstructed, n is a unit vector in 3 dimensions,~ is a detector location, and�n,~ is the tomographic Radon transform,
�n,~ ◦ 5 =

∫
3_ 5 (~ + _n). Or� could represent convolution of a telescope image with a point-spread function due to

optical diffraction (a “denoising” problem). And so on.

Suppose now we have a set of # measurement operators �: : = 1, . . . , # , and we write them in a column vector M
with components [M]: = �: . The �: may be any linear functionals, of the types considered above or of more general
types. They will in general contain some parameters (such as sample locations G , tomographic directions n etc. in the
above examples) which may be chosen by an experimenter, and which are available for optimization. We will express
such parameters \ explicitly, writing (for example) G(\ ).
An actual observation of M (\ ) yields a vector g = M (\ ) ◦ 5 + ε, where ε is a zero-mean measurement noise vector
with a noise covariance

〈
εε)

〉
≡ �. Since ε represents noise, it is uncorrelated with the VVGP model for 5 , so that

〈5 ε〉 = 0. Because of the VVGP over 5 (·) and the observation model of g, the vector [5 (G),g]) is governed by a joint
normal distribution[

5 (G)
g

]
∼ N

{[
` (G)

M (\ ) ◦ `

]
,

[
 (G, G)  (G, ·) ◦ M (\ ))

M (\ ) ◦  (·, G) M (\ ) ◦  (·, ·) ◦ M (\ )) + �

]}
. (2.1)

Supposing instead that we have two, sequential observations, g1 = M (\1) ◦ 5 + ε1 and g2 = M (\2) ◦ 5 + ε2, with〈
ε1ε

)
1
〉
≡ �1 ,

〈
ε2ε

)
2
〉
≡ �2, and 〈5 ε1〉 = 〈5 ε2〉 = 0. Then, because of the VVGP over 5 (·) and the observation models

of g1 and g2, the vector
[
5 (G),g1,g2

]) is governed by a joint normal distribution,
5 (G)
g1
g2

 ∼ N



` (G)
M (\1) ◦ `
M (\2) ◦ `

 ,


 (G, G)  (G, ·) ◦ M (\1))  (G, ·) ◦ M (\2))
M (\1) ◦  (·, G) M (\1) ◦  (·, ·) ◦ M (\1)) + �1 M (\1) ◦  (·, ·) ◦ M (\2))
M (\2) ◦  (·, G) M (\2) ◦  (·, ·) ◦ M (\1)) M (\2) ◦  (·, ·) ◦ M (\2)) + �2


 .

(2.2)

3 The Objective Function - Preliminary Version

The joint distribution in Equation (2.1) gives rise to the well-known predictive distribution for 5 (G):

5 (G) |g ∼ N {<,&} , (3.1)

<(\, G) = ` (G) +
[
 (G, ·) ◦ M (\ ))

] [
M (\ ) ◦  (·, ·) ◦ M (\ )) + �

]−1 [g−M (\ ) ◦ `] , (3.2)

& (\, G) =  (G, G) −
[
 (G, ·) ◦ M (\ ))

] [
M (\ ) ◦  (·, ·) ◦ M (\ )) + �

]−1 [M (\ ) ◦  (·, G)] . (3.3)

In consequence of this distribution, we may write the predictive log-likelihood of the target vector 5) at the point G :

L(\, G) = −1
2

log det (& (\, G)) − 1
2
(5) −<(\, G))) & (\, G)−1 (5) −<(\, G)) , (3.4)

where an immaterial constant additive term has been dropped. The term proportional to log det& has not been dropped
– despite its frequent omission when Gaussian “likelihood” expressions are exhibited, it plays an essential role in what
follows.
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The expression in Equation (3.4) is the log of the predictive probability density at G of the function 5 having the value
5) , given the observations parametrized by \ . Suppose we were to maximize this expression with respect to G : The
result would be the point G = G) assigning the highest probability to 5 = 5) . This assignment might be made for a
couple of reasons. If might be that G) is in fact a good solution to the problem. Or, it could be that the distribution
for 5 is very vague at G) , so that the second, data-fit term does not punish 5 for being “far” from 5) , while the term
log det& (which measures the log volume of the “1-sigma” ellipsoid) becomes negative too slowly to have an impact.

In either case, this region of the space now seems interesting to us, and we’d like to seek out new observations that
reduce the uncertainty in this neighborhood. If the observation operators are simple sample operators �G , this means
performing a new experiment at the optimal G) . After updated experimental evidence has become available we will
have new functions< and & , and in general the uncertainty associated with & will be reduced. We may find that at G)
the narrower Gaussian still ascribes a high probability to 5) . Or, we may discover that G) was only favored due to lax
uncertainty, and the more stringent constraints from later data have favored another region of the space - , which we
locate by repeating the optimization of the log-likelihood with the new data.

On reflection, this is not a very satisfactory strategy. The problem is that we can only take one sample at a time this
way, which is tedious and inefficient. We ought to be able to simultaneously explore other promising regions of - , at
least in the early stages when 5 is poorly constrained. Also, when the observation operators are not local operators like
�G , it is not clear from the above discussion what should be done to reduce the uncertainty near G) .

These problems can be addressed by starting from the sequential setup described by Equation (2.2), instead of from
the all-in-one setup corresponding to Equation (2.1). The “2” sector in Equation (2.2) corresponds to several proposed
experiments to be performed, whereas the “1” sector corresponds to experiments already performed, whose attending
data g1 is already in the can. Using Equation (2.2) we express an updated log-likelihood L(\1, \2), which of course
depends on the data in hand g1 and on the hypothetical “latent” data g2. We may average out the g2-dependence of
L(\1, \2) using the distribution g2 |g1 – that is, using what can be known about g2 given our existing measurements
(and our model). The resulting expression depends on G and on \2, but not on g2, and so we may optimize this averaged
expression simultaneously over G and \2.

What we will find when this averaging is complete is an objective function that (1) is capable of evaluating many future
experiments at a time, rather than a single one at a time, and (2) naturally incorporates an “exploration” uncertainty-
reduction imperative that competes with the “exploitation” data-fit imperative, providing a very satisfying solution to
the targeted adaptive sequential design problem.

4 Objective Function, No Training Wheels

Here’s the computation that was sketched out at the end of the previous section.

4.1 Notation Strip-Down

The notation developed so far for the joint dependencies is essential to the nature of the problem, but risks creating an
algebraic train wreck at this point. The normal theory relationships we now require would be heavily burdened if not
stripped of the VVGP, the observation operators, the noise, etc.

So, without loss of generality, consider the following joint normal distribution:
5

61
62

 ∼ N


<

<1
<2

 ,

�5 5 �5 1 �5 2
�15 �11 �12
�25 �21 �22


 , (4.1)
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which is mapped onto the system in Equation (2.2) by the correspondences

5 ↔ 5 (G) (4.2)
61 ↔ g1 (4.3)
62 ↔ g2 (4.4)
< ↔ ` (G) (4.5)
<1 ↔ M (\1) ◦ ` (4.6)
<2 ↔ M (\2) ◦ ` (4.7)
�5 5 ↔  (G, G) (4.8)
�5 1 ↔  (G, ·) ◦ M (\1)) ↔ �)15 (4.9)

�5 2 ↔  (G, ·) ◦ M (\2)) ↔ �)25 (4.10)

�11 ↔ M (\1) ◦  (·, ·) ◦ M (\1)) + �1 (4.11)
�12 ↔ M (\1) ◦  (·, ·) ◦ M (\2)) ↔ �)21 (4.12)
�22 ↔ M (\2) ◦  (·, ·) ◦ M (\2)) + �2 . (4.13)

The interpretation that we give to the stripped down symbols is similar to that of their more complex cousins: 5 is to
be reconstructed from data 61 and 62, which are sequentially obtained — first 61, then 62. We proceed by deriving
the data-predictive distribution, 62 |61, and update formulae for the log-likelihood, which we then average according to
62 |61. In the end, we will use the above correspondences to restore the original interpretation to the calculation.

4.2 Data Predictive Distribution

The data predictive distribution is 62 |61. This is derivable from Equation (4.1) using the usual normal theory
conditioning formula:

62 |61 ∼ N
(
? (2 |1) , & (2 |1)

)
(4.14)

? (2 |1) = <2 +�21�
−1
11 (61 −<1) (4.15)

& (2 |1) = �22 −�21�
−1
11�12. (4.16)

4.3 Gaussian Prediction Update Formula

At the stage when only 61 is known, the predictive distribution for 5 is

5 |61 ∼ N(? (5 |1) , & (5 |1) ) (4.17)
? (5 |1) = < +�5 1�

−1
11 (61 −<) (4.18)

& (5 |1) = �5 5 −�5 1�
−1
11�15 . (4.19)

Once 62 has also been ascertained, we have an updated predictive distribution for 5 :

5 |61, 62 ∼ N
{
? (5 |1+2) , & (5 |1+2)

}
(4.20)

? (5 |1+2) = < +
[
�5 1 �5 2

] [
�11 �12
�21 �22

]−1 [
61 −<1
62 −<2

]
(4.21)

& (5 |1+2) = �5 5 −
[
�5 1 �5 2

] [
�11 �12
�21 �22

]−1 [
�15
�25

]
. (4.22)
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It is convenient to express ? (5 |1+2) and& (5 |1+2) as updates to ? (5 |1) and& (5 |1) , respectively. To do this, we first appeal
to the matrix inversion lemma, [

�11 �12
�21 �22

]−1
=

[
�11 �12
�21 �22

]
, (4.23)

with

�22 ≡
(
�22 −�21�

−1
11�12

)−1
(4.24)

=

(
& (2 |1)

)−1
(4.25)

�12 ≡ −�−1
11�12�22 (4.26)

�21 ≡ −�22�21�
−1
11 (4.27)

�11 ≡ �−1
11 +�

−1
11�12�22�21�

−1
11 . (4.28)

The second line notes the equality with the inverse of Equation (4.16).

Combining Equations (4.21) and (4.23-4.28) we obtain an expression for the mean update:

? (5 |1+2) = < +
[
�5 1�11 +�5 2�21 �5 1�12 +�5 2�22

] [
61 −<1
62 −<2

]
= < +�5 1

(
�−1

11 +�
−1
11�12�22�21�

−1
11

)
(61 −<1)

+�5 2

(
−�22�21�

−1
11

)
(61 −<1)

+
[
�5 1

(
−�−1

11�12�22

)
+�5 2�22

]
(62 −<2)

= ? (5 |1) +
(
�5 1�

−1
11�12 −�5 2

)
�22�21�

−1
11 (61 −<1)

−
(
�5 1�

−1
11�12 −�5 2

)
�22 (62 −<2)

= ? (5 |1) +
(
�5 2 −�5 1�

−1
11�12

)
�22

[
62 −<2 −�21�

−1
11 (61 −<1)

]
= ? (5 |1) +

(
�5 2 −�5 1�

−1
11�12

) (
& (2 |1)

)−1 (
62 − ? (2 |1)

)
, (4.29)

where in the last line we have used Equations (4.15) and (4.25).

Similarly, combining Equations (4.22) and (4.23-4.28) we obtain an expression for the covariance update:

& (5 |1+2) = �5 5 −�5 1�11�15 −�5 2�21�15 −�5 1�12�25 −�5 2�22�25

= �5 5 −�5 1�
−1
11�15 −�5 1�

−1
11�12�22�21�

−1
11�15

−�5 2

(
−�22�21�

−1
11

)
�15 −�5 1

(
−�−1

11�12�22

)
�25 −�5 2�22�25

= & (5 |1) −
(
�5 1�

−1
11�12 −�5 2

)
�22�21�

−1
11�15 −

(
�5 2 −�5 1�

−1
11�12

)
�22�25

= & (5 |1) −
(
�5 2 −�5 1�

−1
11�12

)
�22

(
�25 −�21�

−1
11�15

)
= & (5 |1) −

(
�5 2 −�5 1�

−1
11�12

) (
& (2 |1)

)−1 (
�25 −�21�

−1
11�15

)
. (4.30)

At this stage, it is probably pretty clear why it was necessary to strip down the notation :-\.

In the next subsection, we will see that the mean update formula, Equation (4.29), is necessary for deriving the required
expectation value over the latent future data g2. However, another value of these update formulas is that the associated
linear problem (“

(
& (2 |1)

)−1”) needs to be solved only in the 2 space of proposed new experiments, given the fixed
solution to the linear problem associated with the previous experiments (“�−1

11 ”). This can represent a computational
saving over the cost of solving the problems associated with the 2+1 spaces (compare Equations 4.21-4.22).
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4.4 Expected Log-Likelihood

The predictive distribution for 5 with knowledge of 61 and 62, evaluated at 5 = 5) , has, according to Equations
(4.20-4.22), the log likelihood expression

L(62) = −
1
2

log det& (5 |1+2) − 1
2

(
5) − ? (5 |1+2)

)) (
& (5 |1+2)

)−1 (
5) − ? (5 |1+2)

)
, (4.31)

where we have indicated a dependency of L on 62 that arises through the dependency of ? (5 |1+2) on 62. Note that this
is the only such dependency in this expression, as the covariance is independent of the data. As adumbrated above, we
must now average this expression according to the distribution 62 |61.

Easily done: Using Equations (4.14-4.16) and (4.29), we have

�62 |61

[
? (5 |1+2)

]
= ? (5 |1) (4.32)

�62 |61

[(
? (5 |1+2) − ? (5 |1)

) (
? (5 |1+2) − ? (5 |1)

)) ]
=

(
�5 2 −�5 1�

−1
11�12

) (
& (2 |1)

)−1 (
�25 −�21�

−1
11�15

)
. (4.33)

From this it follows that the averaged log-likelihood is

�62 |61 [L(62)] = −1
2

log det& (5 |1+2) − 1
2

(
5) − ? (5 |1)

)) (
& (5 |1+2)

)−1 (
5) − ? (5 |1)

)
−1

2
Trace

{(
Cf2 − Cf1C−1

11 C12

) (
Q(2 |1)

)−1 (
C2f − C21C−1

11 C1f

) (
Q(f |1+2)

)−1
}
. (4.34)

This is the expression that we will use as an objective for our optimization problem, after restoring the notational
superstructure. It has some interesting features. The proposed future “2” experiment has unknown data, but a known
predictive covariance & (5 |1+2) , and this covariance naturally takes up station in the log-determinant term and in the
data-fit term. In default of the “2” data, the role of the mean in the data-fit term is played by the predictive “1” mean
? (5 |1) . If this were all there were, the problem would appear as a slight re-elaboration of D-optimality.

However, there is an additional negative-definite trace term. This term has complicated behavior, but one thing it
appears to do is to ensure that new points are not redundant with old points. It does this through the

(
& (2 |1)

)−1 term. In
the noise-free case, this term is singular if any of the “2” points reproduces any of the “1” points, for the same reason
that the “snake” of a GP predictive distribution has a root-variance “waist” that shrinks to zero as the curve approaches
a noiseless training point: the predictive covariance develops a zero eigenvalue as a prediction point approaches a
training point. As a consequence, in the noise-free case, when a “2” observation reproduces a “1” observation, the
trace term diverges. Therefore, this term causes “1” points to “repel” “2” points, and leads to an exploration incentive
that contrasts the exploitation incentive inherent in the data-fit term. In the noisy case the repulsion is softened, but still
present: just as the GP snake’s waist shrinks to a finite size rather than to zero, so the predictive covariance develops a
small (but not zero) eigenvalue. Hence, the strength of the repulsion is regulated by the size of the noise terms. This is
in accordance with intuition — very noisy measurements may require multiple nearby samples to get a handle on the
shape of 5 , whereas precise ones don’t require much company.

One can similarly see that “2” observations will tend to avoid each other as well, since in the noise-free case they
produce redundant rows and columns of & (2 |1) , and hence a divergent trace term. So again they have a tendency to
disperse that is regulated by the size of the noise terms.

4.5 Piling The Notation Back On

Now we adapt the formula of Equation (4.34) to the Gaussian distribution described by Equations (2.2), which models
our targeted adaptive design problem. We appeal to the correspondences in Equations (4.2-4.13), as well as to Equations
(4.16), (4.18), (4.19), and (4.30).
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The objective function to be optimized over experimental parameters \2 and searched over the space - for an G ∈ -
such that 5 (G) = 5) is L(\2, G), given by

L(\2, G) = −1
2

log det& (5 |1+2) − 1
2

(
5) − ? (5 |1)

)) (
& (5 |1+2)

)−1 (
5) − ? (5 |1)

)
−1

2
Trace

{(
Cf2 − Cf1C−1

11 C12

) (
Q(2 |1)

)−1 (
C2f − C21C−1

11 C1f

) (
Q(f |1+2)

)−1
}
, (4.35)

where

�5 5 (G) =  (G, G) (4.36)
�5 1 (G) =  (G, ·) ◦ M (\1)) = �)15 (4.37)

�5 2 (\2, G) =  (G, ·) ◦ M (\2)) = �)25 (4.38)

�11 = M (\1) ◦  (·, ·) ◦ M (\1)) + �1 (4.39)
�12 (\2) = M (\1) ◦  (·, ·) ◦ M (\2)) = �21 (\2)) (4.40)
�22 (\2) = M (\2) ◦  (·, ·) ◦ M (\2)) + �2 (4.41)
? (5 |1) = ` (G) +�5 1�

−1
11 [g − M (\1) ◦ `] (4.42)

& (2 |1) (\2) = �22 (\2) −�21 (\2)�−1
11�12 (\2) (4.43)

& (5 |1) (G) = �5 5 (G) −�5 1 (G)�−1
11�15 (G) (4.44)

& (5 |1+2) (\2, G) = & (5 |1) (G)

−
(
�5 2 (\2, G) −�5 1 (G)�−1

11�12 (\2)
) (
& (2 |1) (\2)

)−1 (
�25 (\2, G) −�21 (G)�−1

11�15 (\2)
)
(4.45)

The solution to the targeteted sequential adaptive design problem is then

G) = arg max
G

{
max
\2
{L(\2, G)}

}
. (4.46)

5 A Bit Of Discussion

As usual with Gaussian/GP problems, this one will threaten to get costly the more data accumulates. Availing oneself
of some of the efficiencies that come throught the prediction update formulae will certainly be necessary, especially
when searching a batch of # new experimental parameters \2.

It is possible that another application of this thing is in manufacturing experiments, such as electrospinning or
flamespray chamber experiments, and where the target is a product specification. What I have in mind is that in this
case, - is the space of control parameters; . is a space with some components specifying the product (sizes, plane
angles, roughnesses, etc.), and other components specifying observed diagnostic output (e.g. Raman scattering data or
output of high-speed photography). The target is the desired product, within some tolerances. Now, only some of the
components of the vector 5 (G) are required to hit the target, the rest are diagnostic data we learn are associated with
good or bad product outcomes. I’m have not thought this through, as should be clear from this cursory discussion, but
I do believe there are possibilities worth exploring here.
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